Computation of Galois Group Elements of
a Polynomial Equation

By E. J. Cockayne*

Abstract. This note demonstrates the use of the computer for constructing
elements of the Galois group over the rationals of a polynomial equation with
rational coefficients. i

1. The Principal Theorem Involved. Any polynomial equation in 2’ with rational
coeflicients can be transformed by 2’ = Az (for some rational A) into a polynomial
equation in z which has integer coefficients and is monic. Such a transformation pre-
serves Galois groups over the rationals and it is therefore sufficient to consider
polynomial equations of this simpler type.

The methods of this paper depend on the following theorem [1, pp. 190-191]:

Let p be any prime number, I/(p), the residue class ring of integers modulo p and R
the field of rationals. Suppose that f(x) reduces to f,(x) modulo p, neither f(zx) nor f(x)
has a multiple root and f,(x) has the irreducible factorisation

@) = fil@) fo(@)- - - fr(x)

in I/(p) where these factors have degrees di, ds, - - -, d, respectively. Then G, the Galois
group of f(z) = 0 over R, contains a permutation whose representation as a product of
disjoint cycles consists of r cycles of lengths ds, - - -, d..

2. Outline of Procedure. For a series of primes p, the irreducible factors of f(x)
modulo p are calculated on the machine (see Section 3) and printed out together
with their degrees (di, - - -, dr),. The polynomial f(x) and its reduced polynomial
modulo p are tested for multiple roots by inspection of the factors and using the
results of [1, p. 120].

3. Construction of Irreducible Factors Modulo p of an Integer Polynomial. The
procedure given in the flow chart determines the irreducible factors modulo p of the
polynomial degree d whose coefficients are initially stored in vector A. At any stage,
L is the degree of the polynomial stored in A. The algorithm generates successively
all monic polynomials B over I/(p) of degree N = 1, 2, 3, - - - in this ascending
order.. As each B is generated, we determine by standard polynomial division
whether or not it is a factor of A modulo p. Any factor B thus found is certainly
irreducible, for any factors of B would have been noticed at a smaller value of N.
The process is continued by replacing A and L respectively by the quotient A/B
mod p and its degree, and by testing the new dividend A with the same divisor B.
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The algorithm terminates when L < 2N — 1 and the current value of 4 is reduced
modulo p and printed out as the last irreducible factor. For suppose the contrary:
A degree L has a factor mod p of degree N where L < 2N — 1. Then A4 also has a
factor of degree L — N < N — 1 which would have been extracted at an earlier
stage.

Read A,D,p

Procedure for Irreducible Factors modulo p of an Integer Polynomial

The FORTRAN program, to construct irreducible factors modulo p, is repro-
duced in the microfiche section of this issue.

4. Galois Group Properties from the Algorithm. The algorithm produces a set P
of primes and for each p & P a set of integers {di, - - -, d,},. Assuming no trouble
with multiple roots, for each p & P, G contains a permutation «, as described in
Section 1 and hence S,, the cyclic permutation group generated by «, is a subgroup
of G with order the least common multiple of {ds, - - -, d,},. Thus we obtain infor-
mation about the order of G. The disjoint cycle structure of any element of S, may
be calculated using the following result: If 8 is a cycle of length n, then in disjoint
cycles 3¢ contains exactly d cycles of length n/d where d = g.c.d. (n, t). Finally, if
our methods produce a transposition and an (n — 1) eycle as elements of G for a
polynomial of degree n where G is known to be transitive (this is true if f(z) is ir-
reducible modulo any prime), then G = S,, the symmetric group of all permutations
of n objects.

5. An Application. In [2] Z. A. Melzak showed that the classical Steiner problem,



COMPUTATION OF GALOIS GROUP ELEMENTS 427

to join n points in the Euclidean plane by a minimum length network, could be
solved by a finite number of Euclidean constructions (i.e. ruler-compass construc-
tions in the classical sense). The problem is also generalized so that more complicated
network functions than length are to be minimized. S,.s,: Given nonnegative reals

@, 8, v and n points a; (¢ = 1, - - -, n) in the plane to find an integer k (= 0) and %
additional points s;, - - -, sy and to construct the tree U (circuit-free connected
graph) with vertices ai, - - -, @y, 81, - - +, S 50 as to minimize the sum

n

k
LW) + & 2 w(ad) + B 2 ws) + vk,
where L(U) is the total length of the network and w(b) is the valency of vertex b.

The methods of this paper were used to prove that the more general problem is
not, in general, solvable by Euclidean constructions. For suitable «, 8, v, Syepy re-
duces to (see [2]): Given n points a; (z = 1, - - -, n) in the plane to find the point ¢
which minimizes Y " |ga,|.

Five points with integer coordinates were taken, symmetrically placed with re-
spect to the z-axis. It was shown that the x coordinate of g satisfied an irreducible
eighth degree polynomial equation whose Galois group over R had odd order. Thus
this coordinate was not an element of an extension field of R of degree 2™, hence ¢
could not be found by Eueclidean constructions [1, p. 185].

6. Examples. The table lists the coefficients of polynomials f(z) in descending
order together with the degrees of their irreducible factors modulo 2, 3, 5, 7, 11
(unless there is a multiple root). The structure column gives cycle lengths of ele-
ments of G and N (the least common multiple of the degrees of factors) is a divisor
of the order of G. For example the Galois group of

2+ 2+ 8+ 3 +52+1=0

contains cycles of length 2, 3 and 5 and two permutations whose disjoint cycle
representation consist of two 2-cycles and a 2-cycle and 3-cycle respectively. The
order of (@ is a multiple of 30.

f@) 2 3 5 7 11 Structure N

1458 Multiple Multiple 3 2,1 3 2,3 6
Root: Root Irreducible Irreducible G = S;

16742 Multiple 1,3 Multiple 1,1,2 1,1,2 2,3 6
Root Root

128351 Multiple 5 1,2,2 2,3 2,3 2,3,2-2,2-3,5 30
Root Irreducible Transitive

1111752 Multiple 1,23 Multiple 2,4 6 2,3,4,6,2-3,24 24
Root Root TIrreducible

12239854 1,1,5 Multiple 1,6 1,2,4 DMultiple 4,5, 6,2-4 120

Root Root
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N=Nel

IF (Le(2®¥N=11) 52+62+88
WRITE (3+127) LA

CALL EXIT

WRITE (3:127) LslQUO

CALL EXIT

FORMAT (10%912+10X910(1202X})
FORMAT (1012+2Xe1292X012)
END

SUBROUTINE IPDIV(IAsIDIMASIBYIDIMBIQUOS IREM)

C DIVIDES INTEGER POLY A BY INTEGER POLY IBQUOTIENT IS I1QUO
C REMAINDER 1S IREM.

C
5
[ ]
&
33
C

1F (IDIMALLTIDIMB) CALL EXIT
DIMENSION IA(IDIMA} »IB{IDIMB)+IREMIIDIMB) ¢ 1QUOCIDIMAY
K=IDIMA

IF (KeGEIDIMB) GO TO &

DO 8 la=lK

IREM(la)slA(LS)

RETURN L4
IQUO(K+1=IDIMB)I=]A(K)

00 33 Js=1,1DIMB
lA‘KIIDIHQ¢J"!A!K'ID!MG’J"!A‘K‘QI!(JD
KsK~

GO T0 5

END

SUBROVTINE VECTO(IVECsI1s)

C ASSIGNS O TO ALL COMPS OF A VECTOR,

<

99

DIMENSION IVEC(I14)
DO 99 [15=1+116

IVEC(115)1=0

RETURN

END
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FORTRAN PROGRAM

DIMENSIDN A(100)4C{100)+8(100)+D(100)P(100)4R(10N),Q(100)
DIMENSION S(100),FN(100)

WRITE(6,600C)

FORMAT(*1* 420X *CONTINUED FRACTION EXPANSIGN FOR BINUMTAL QUADRAT IC
1 SURD*/)

INITIALIZE INDICES AND VARIABLES

NP =0

N=0

. K=l

' 5002

OO0 Oe

5001

St1)=]1,

Ril)=1,

All)=),

Cltli=1,

READ STARTING CONDITIONS

READ (5,5001) P(1),Q(1),00,IPER
1F(0(1),EQ.0.) GO TO 99

IPER = NBR OF A'S TO BE READ IN
IPER=IPER*]

READ (5,5002) (ACT) oI=24IPER) o(ClI)oIm2, IPER)
FORMAT(8F10.1)
FORMAT(3F10.1,13)

DX=sSQRT(DD)

. FN(l"lP(l)‘DX)'(S[l)IO(l!D

6001

6002

NP=NP+ )

MRITE( 646001 )INPP(K) ,Q(K) DD
FORMAT(21X*PROBLEM *[2,7X'PO ='F7.],4X* Q0 -'F7.1.4X‘0 ='FB.1)
WRITE( 646002) . _ N
FORMAT(24XN®3IX A'SX COOX BOBX*O*BX  P'BX* R*BX® Q' BX* S 6X! FN )

CIC=1

Ip=2

.60 TO 25

12

N=N+1

. IF(X.EQ.98) GO TO 120

K=K+1
ALK)=ALIC)

CIKI=C(IC)

PP=B(N) *Q( N} SRIN)-B(N) #S (N} P ( N}
RR=D(N)*R(N)® S{N)

CALL LTU(PP,RR)

P(K)=Pp

R{K)=RR
OO-GDOORRtRR-PPOPPi-C(IC)OS(NI
SS=A(IC)*Q{ N) «RR #RR

CALL LTUIQQ.SS)

Q(K)I=QQ

S(K)=SS

FNCK)={PP+D X} *( SS/QQ)

‘8 ROUTINE

S BINC®SIK)

BIK) IS A MULTIPLE, OF S{K)
BINC IS THE INCREMENT



