
Computation of Galois Group Elements of 
a Polynomial Equation 

By E. J. Cockayne* 

Abstract. This note demonstrates the use of the computer for constructing 
elements of the Galois group over the rational of a polynomial equation with 
rational coefficients. U 

1. The Principal Theorem Involved. Any polynomial equation in x' with rational 
coefficients can be transformed by x' = Xx (for some rational X) into a polynomial 
equation in x which has integer coefficients and is monic. Such a transformation pre- 
serves Galois groups over the rational and it is therefore sufficient to consider 
polynomial equations of this simpler type. 

The methods of this paper depend on the following theorem [1, pp. 190-191]: 
Let p be any prime number, II(p), the residue class ring of integers modulo p and R 

the field of rational. Suppose that f(x) reduces to fp(x) modulo p, neither f(x) nor fp(x) 
has a multiple root and fp(x) has the irreducible factorisation 

fp (x) = fl (X) f2 (X) f -r (X) 

in II(p) where these factors have degrees di, d2, * * *, d, respectively. Then G, the Galois 
group of f(x) = 0 over R, contains a permutation whose representation as a product of 
disjoint cycles consists of r cycles of lengths di, ** , dr. 

2. Outline of Procedure. For a series of primes p, the irreducible factors of f(x) 
modulo p are calculated on the machine (see Section 3) and printed out together 
with their degrees (di, ***, d,),. The polynomial f(x) and its reduced polynomial 
modulo p are tested for multiple roots by inspection of the factors and using the 
results of [1, p. 120]. 

3. Construction of Irreducible Factors Modulo p of an Integer Polynomial. The 
procedure given in the flow chart determines the irreducible factors modulo p of the 
polynomial degree d whose coefficients are initially stored in vector A. At any stage, 
L is the degree of the polynomial stored in A. The algorithm generates successively 
all monic polynomials B over I/(p) of degree N = 1, 2, 3, ... in this ascending 
order. As each B is generated, we determine by standard polynomial division 
whether or not it is a factor of A modulo p. Any factor B thus found is certainly 
irreducible, for any factors of B would have been noticed at a smaller value of N. 
The process is continued by replacing A and L respectively by the quotient A/B 
mod p and its degree, and by testing the new dividend A with the same divisor B. 
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The algorithm terminates when L ? 2N - 1 and the current value of A is reduced 
modulo p and printed out as the last irreducible factor. For suppose the contrary: 
A degree L has a factor mod p of degree N where L ? 2N - 1. Then A also has a 
factor of degree L - N ? N - 1 which would have been extracted at an earlier 
stage. 

Read A, Dp 
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Procedure for Irreducible Factors modulo p of an Integer Polynomial 

The FORTRAN program, to construct irreducible factors module p, is repro- 
duced in the microfiche section of this issue. 

4. Galois Group Properties from the Algorithm. The algorithm produces a set P 
of primes and for each p E P a set of integers I di, * * -, drl,. Assuming no trouble 
with multiple roots, for each p E P. G contains a permutation ap as described in 
Section 1 and hence Spy the cyclic permutation group generated by ap is a subgroup 
of G with order the least common multiple of Id,, .. * drl,. Thus we obtain infor- 
mation about the order of G. The disjoint cycle structure of any element of S, may 
be calculated using the following result: If j3 is a cycle of length n, then in disjoint 
cycles kit contains exactly d cycles of length n/d where d = g.c.d. (n, t). Finally, if 
our methods produce a transposition and an (n - 1) cycle as elements of G for a 
polynomial of degree n where G is known to be transitive (this is true if f(x) is ir- 
reducible modulo any prime), then G = Sn, the symmetric group of all permutations 
of n objects. 

5. An Application. In [2] Z. A. Melzak showed that the classical Steiner problem, 
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to join n points in the Euclidean plane by a minimum length network, could be 
solved by a finite number of Euclidean constructions (i.e. ruler-compass construc- 
tions in the classical sense). The problem is also generalized so that more complicated 
network functions than length are to be minimized. S.,,,: Given nonnegative reals 
a, /3, 'y and n points ai (i 1, * , n) in the plane to find an integer k (_ 0) and k 
additional points si, *-, Sk and to construct the tree U (circuit-free connected 
graph) with vertices a,, *, an, Sl, ..., Sk so as to minimize the sum 

n k 

L(U) + a aw(ai) + w(sj) + yk, 

where L(U) is the total length of the network and w(b) is the valency of vertex b. 
The methods of this paper were used to prove that the more general problem is 

not, in general, solvable by Euclidean constructions. For suitable a, 3, -y, Snad re- 
duces to (see [2]): Given n points ai (i = 1,***, n) in the plane to find the point q 
which minimizes l jqail. 

Five points with integer coordinates were taken, symmetrically placed with re- 
spect to the x-axis. It was shown that the x coordinate of q satisfied an irreducible 
eighth degree polynomial equation whose Galois group over R had odd order. Thus 
this coordinate was not an element of an extension field of R of degree 2m, hence q 
could not be found by Euclidean constructions [1, p. 185]. 

6. Examples. The table lists the coefficients of polynomials f(x) in descending 
order together with the degrees of their irreducible factors modulo 2, 3, 5, 7, 11 
(unless there is a multiple root). The structure column gives cycle lengths of ele- 
ments of G and N (the least common multiple of the degrees of factors) is a divisor 
of the order of G. For example the Galois group of 

35 4 3 2 x + 2x + 8x + 3x + 5x + 1 = 0 

contains cycles of length 2, 3 and 5 and two permutations whose disjoint cycle 
representation consist of two 2-cycles and a 2-cycle and 3-cycle respectively. The 
order of G is a multiple of 30. 

f(X) 2 3 5 7 11 Structure N 

1 45 8 Multiple Multiple 3 2, 1 3 2,3 3 
Root Root Irreducible Irreducible G = 83 

1 6 7 4 2 Multiple 1, 3 Multiple 1, 1, 2 1, 1, 2 2, 3 6 
Root Root 

12 8 3 5 1 Multiple 5 1, 2, 2 2, 3 2, 3 2, 3, 2-2, 2-3, 5 30 
Root Irreducible Transitive 

1 1 1 1 7 5 2 Multiple 1, 2, 3 Multiple 2, 4 6 2, 3, 4, 6, 2-3, 2-4 24 
Root Root Irreducible 

12 2 3 9 8 5 4 1, 1, a \Iultiple 1, 6 1, 2, 4 Multiple 4, 5, 6, 2-4 126 
Root Root 
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C 
48 NwN+t 

115 IF CL*(2*NeI)) 62.62.8, 
62 WRITE (3,127) L.A 

CALL EX I T 
30 wRITE (3,127) L#IOUO 

CALL EXIT 
127 FORMAT (l'O'I2,lOxl0(I2,2XK)) 

38 FORMAT (1o012ZX2,12Xj12) 
END 

SUBROUTINE IPDIV( IAIDIMA.IBIDIMBSIQUO*IREM) 
C 
C DIVtDES INTEGER POLY IA BY INTEGER POLY 1*eQUOTIENT IS IQUD 
C REMAINDER IS tREM. 
C 

IF CIDlMA*LtdDIM)8 CALL EXIT 
DIMENSION IA(IDIMA) .8 IDIMB) IREMIIDIMB eKtQOuQ DIMA) 
K tDI MA 

S If (KGE.tDIMSI GO TO 4 
DO 0 it4*1K 

* IREM(1t4wIA(14) 
RETURN o 

4 IOUO(K+I-lDIMS)wlA(K) 
DO 33 Jl~tIDIMS 

33 IA(K-IOtDIMB4)wZtAtK4-eDIMB+Jf-eA(K)wISJ) 
KK-Kl 
GO TO S 
END 

SUBROutINE VECTO( IVECt114) 
C 
C ASSIGNS 0 TO ALL COPS OF A VECTOR, 
C 

DIMENSION tVEC 114) 
DO 99 tl15'1o4 

99 IVEC(tl5)mO 
RETURN 
END 
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C F OTRAN PROGRAM 
0001 DIMENSION A(100I ,C(100I .8cI0o,D(l0ooh.PgxooI*Rpooplo(loo, 
0002 DIMENSION S 11001, FN1o0 
0003 WRITE69.6000) 
0004 6000 FORMAWT(1.2OXeCONTINUEO FRACTION EXPANSION FOR BINOMIA& QUADRATIC 

1 SURD/1) 
C INITIALIZE INDICES AND VARIASLES 

0005 NPo 
0006 98 N=0 
000? Kwl 
0008 M11INI. 
0009 RIll-L. 
0010 A(I1-I. 
0011 CuIlul. 

C REAO STARTING CONDITIONS 
0012 READ (5.S0011 P(l),Q(11,OD_#IPER 
0013 IF(O(11.EQ*.O. GO TO 99 

C IPER = NOR * A'S To BE READ IN 
0014 IPERUIPER*1 
001'I READ (5.SO AI0021(A( 1 .1 21PF R) ,ICI I .II2 IPER 
0016 500? FORMAT(8F10.11 
_QQI? 5001 FORMA T 3F10.A,131 
0018 DXUSORI(DnI 
0019 FN( I I =- Pi I +D X) *( 5(1) /0 ( 1)1 
0020 NPmNP. 1 
0021 WRITEC 6960011NP.P(KI .0(K) O00 
0022 6001 FORATI 2X' OBLEM 'I 2,X'PO - F7.,l4X90 ' F?. 1.4X' O 'F8.1) 
0023 WRI TEC 61.40021 
0024 6002 FORMAT(24X'N'3X'A'5X'C'9X'8'soX'8x' P'sBX'Rs'X'g'eXeSe6X' .4 
0025 IC-l 
0026 IP? 
0027 GO TO 25 
0028 1i2 N+ 1 
0029 IF-(K.EO. 98) GO TO 120 
0030 K=Ktl 
0031 A(K1-A(ItC) 
0032 C(K)-C(IC) 
0033 PPOBN)*{ N)R(N1-1D"N S(N)*P4N) 
0034 RROD(N)*R(N)*S(NI 
0035 CALL LTUJ(PP.RR) 
0036 P(K1)-PP 

QO~~~t RtK1wRR_ 
0038 QO-( *C(I C 
0039 SS-A( IC I N 1 *RR*RR 
0040 CALL LTU(0QQ0.SS) 
0041 Q(K)-Qw 
0042 S,(KI-SS 
0043 F1 K-I 1PP+DX*( SS/'QQ) 

eIC a ROUTIN"E 
C 

0044 25 SINC-S(KI 
C BIKI IS A MUt1TPLE OF SItK 
C BSIC IS THE INCCREPENT 


